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Abstract—Analytical study of dynamical mechanisms of the temperature differences between the elements
of truss constructions under uniform heat transfer conditions is completed. The time-dependent tem-
perature differences are associated with the different thermal time constants of the truss elements. In this
study the truss elements are assumed to be the rods with low Biot numbers that allow one to consider them
as thermally-thin bodies. The conductive lengths of the rods are supposed to be much smaller than the
corresponding dimensions that allow one to neglect the conductive heat transfer. Analytical evaluations
of the temperature differences are made for the following stepwise changing and oscillatory operating
parameters: the ambient temperature; the heat flux density on the elements surface; and the convective
heat transfer coefficient. The temperature differences are shown to be small for the two operating conditions
limits. Firstly, for the case when all the time constants of the elements are much larger than the period of
the operating parameters oscillation. Secondly, for the case when the time constants of all the elements are
much smaller than the period of the oscillations.
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1. INTRODUCTION

DeveLopMENT of precise radio telescopes needs
evaluations of the temperatures of the construction
elements and the temperature differences between
them. The temperature differences between the
elements of truss constructions lead to constderable
thermal deformations which affect the accuracy of the
reflecting surface supported by the truss construction
and the focusing efficiency of the antenna [1-3].

The elements of the truss constructions of radio
telescopes operate under conditions determined by
the following heat transfer factors: direct and earth-
reflected solar radiation ; infrared radiation ; and con-
vective heat transfer on the elements surface. It is
evident, that the main temperature differences
between the truss elements originate from the non-
uniformity of the heat transfer conditions on their
surfaces (due to the different space orientations of the
elements). The steady-state temperature models of the
radio telescope constructions are studied in the mono-
graph [3] and shown not to be in full agreement with
the experimental data.

In the practice of radio telescope development the
temperature differences associated with this origin are
suppressed by the following means. Firstly, by the use
of coatings with high reflectance in the solar spectrum
and high emissivity in the infrared spectrum. These
coatings diminish the surface heat fluxes and, as a
consequence, the absolute temperatures and the tem-
perature differences in truss constructions [3]. The
second way to decrease these temperature differences
is the use of shells with insulation layers which enclose

the truss construction of the antennas under the con-
trolled ventilation inside them. This allows the pro-
tection of the truss construction from direct non-uni-
form radiative fluxes and, therefore, decreases the
temperature differences between the elements of the
truss.

But the above mentioned measures make it possible
to diminish considerably only the steady state com-
ponents of the temperature differences between the
elements. With the development of the new generation
of the millimeter radio telescopes it is necessary to
consider more accurately their thermal regimes and
to take into account the dynamical mechanisms of the
temperature differences arising in truss constructions.

This paper is devoted te the analytical study of the
temperature regimes of truss elements under dynami-
cal heat transfer operating conditions, when the fol-
lowing parameters are considered as time-dependent ;
the ambient temperature ; the heat fluxes on the truss
surface associated with the radiation fluxes; and the
convective heat transfer coeflicient.

2. FORMULATION OF THE PROBLEM

The truss constructions have many rod-like
elements which differ in geometrical and thermo-
physical properties. The elements are assumed to be
in the airflow of forced or natural ventilation. The
intensities of the convective heat transfer are assumed
to be known in the form of heat transfer coefficients.

The heat transfer parameters on the surface of the
truss are assumed to be the same for all elements. This
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Bi, Biot number, dimensionless
A, convective heat transfer coefficient
[Wm K 1

Akl amplitude of the convective heat transfer
coefficient [Wm™ " K ]

i harmonic mean of the convective heat
exchange coefficient [Wm ~ K]

Ah* = Ah/h  dimensionless amplitude of the
convective heat transfer coefficient

B* = hih(0) dimensionless convective heat
transfer coefficient

k; heat conductance coeflicient
Wm 2K
L, length of the element [m]

Le;  conductive length [m]
N total number of the elements
heat transfer perimeter of the element [m]

45 surface heat flux density [W m 7]

Ay,  amplitude of surface heat flux density
[Wm~ -]

s harmonic mean of ¢, [W m 7]

S, cross-sectional arca of the truss element
[m?]

T, temperaturc of the element [K]

T, ambient temperature [K]

AT, temperature difference between the
elements [K]

AT%  amplitude of AT, [K]

NOMENCLATURE

T*  additional temperature of the clement
K]

o7  allowable temperature difference
between the clements [K]

max (AT} maximal value of AT}, [K]

AT, amplitude of the ambient temperature

K]

T, harmonic mean of 7, [K]

t time variable s}

1 thermal time constant of the element [s]

ty oscillation period [s]

Lme  Ume corresponding to max (AT} [s]

At,  characteristic time of convective heat
transfer change

Afr  characteristic time of ambient
temperature change [s]

At characteristic time of heat flux density

1/
change [s].

Greek symbols

J; reduced diameter of the element [m)
o] frequency of osciliation of the heat
transfer operating parameters [s™ ']
o dimensionless frequency of oscillation of
the clement temperature.
Subscripts

i.j  clements indices.

assumption is made to focus consideration on the
dynamical components of the arising temperature
differences.

Theelementsof thetruss (i = 1, ..., N)areassumed
to be long rods with the low Biot numbers:

0,

<< 1,

Bi; P

i=1.....N (H
;

where &, = S,/P, are the reduced diameters of the
elements given by the ratios of the rods cross-sectional
areas S, to the heat transfer perimeters P, 4, are the
heat transfer coefficients and &, are the heat con-
ductance coefficients of the elements.

This condition allows us to consider the cross-sec-
tion temperature distribution of the clements as the
uniform, to neglect the cross-sectional derivatives in
the conductivity equation and to take into account
the surface heat transfer conditions in the form of the
cquivalent heat sources.

The conductive lengths which limit the conductance
influence along the rods are assumed to be much
smaller than the corresponding geometrical lengths of
the elements:

This condition allows us to omit the longitudinal
derivative in the conductivity equations for the rods
and to neglect the conductive heat fluxes between the
clements through the conjunctions, as shown in ref.
(41

Taking into account the above mentioned
conditions, the temperature regimes of the elements
can be described by the following ordinary differential
equations:

T ) .
dar = —h{NT, —~ T (D) +q4(D).

005

i=1...,N (3

where T, are the temperatures of the truss elements, ¢
is the time variable, p, are the densities of the elements,
¢; are the specific heats of the elements, #,{1), T,(1),
¢.(t) are the time-dependent functions of the con-
vective heat transfer, ambient temperature and heat
flux density, respectively.

For the case when the thermal time constants of all
the elements are much smaller than the characteristic
times of the heat transfer parameters variations:

= O'il'h—' « Aty Ay, A,

the temperature regimes of the elements can be con-

i=1....N (4
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sidered as quasi-stationary. For this limit it is possible
to neglect the time derivatives in equation (3). The
temperatures of the elements for this limit can be given
by the following expression :

qw'(’*‘)
hi(n)

which results from the energy balances on the surfaces
of the elements. This expression shows that under
quasi-stationary conditions (4) the heat transfer
uniformity on the truss elements (¢, = q¢,;; b= 5;;
i,j=1,..., N) keeps the temperature uniformity in
the truss construction and the temperature differences
between the elements do not exist :

AT, =T,—T, =0.

T =T (D+ i=1,....N (5)

But if the conditions (4) are not valid the dynamical
temperature regimes which make up the subject of
this paper take place.

3. DYNAMICAL HEAT EXCHANGE REGIMES

Taking into account that the parameters %, T, ¢
are time-dependent one can obtain the solution of
equation (3) in the general form [5] as:

Ti(t) = Ty, €Xp {—f h* () dr’}
i

*
+ J (THO)+ () To(x)}
{3

(‘T
X eXp {— J h*(r") dr”} dr’ (6)
where 1 =¢/1, is the dimensionless time variable,
t, = 0,p,¢;,/h{0) i1s the thermal time constant of the
elements, 2¥(t) = h,(t)/h,(0} is the dimensionless con-
vective heat transfer coefficient, 7% = ¢(7)/1,(0) is
the temperature addition of the elements associated
with the heat transfer on the elements surfaces and
Ty o 1s the initial temperature of the elements.

This solution allows one to carry out the analysis
of the dynamical thermal regimes and the temperature
differences which originate from the time-dependent
heat transfer operating parameters,

4. AMBIENT TEMPERATURE INFLUENCE

4.1. Stepwise changes of the ambient temperature

In this case it is assumed that the ambient tem-
perature changes from T, to 7, during the time A#,
which is much smalier than the thermal time constants
of the elements:

Aty <t i=1,...,N.

Taking into account the above conditions, and
assuming that the initial temperature is given by the
heat transfer balance approximation:
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and completing the integration of the solution (6) one

can obtain the following expression for the tem-

peratures of elements:

T = F+ T4 (T =T exp (= /1), (®)

This expression shows that the temperature of the
elements changes exponentially and the rates of the
change are determined by the thermal time constants
which include the thermophysical properties, heat
transfer coefficient and geometrical parameters. The
temperature differences between two arbitrary
elements are given by :

AT, = (T~ Too)(exp (— t/t) —exp (= 1/1)). ©)

In accordance with this expression the temperature
difference between the two elements is zero at the
initial moment and grows up to its maximal value:

max {T,;} = (T — T/ "=l 1) (10)
where n,; = t,/t; is the ratio of the thermal time con-
stants of the elements. This maximum is attained at

the moment :

t
b = (&7 =17 ) In {—’.

i

an

After this moment the temperature difference
decreases monotonously and for the times:

T, T,
1> L In 2 Tl (12)

it can be considered as negligible (67 is the tem-
perature difference limit allowable between the
elements of the truss).

In Fig. | the dimensionless temperature difference
AT, /AT, vs the time variable are shown for the differ-
ent values of the convective heat transfer coefficient
h. The maximal value of AT,/AT, is determined by
the following ratio:

AT/ AT,

Fic. 1. Dimensionless temperature difference between
elements vs time for the different convective heat transfer
coefficients.
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0, = (?,;)g(',
» (3,[3,:61';
and does not depend on the value of the cocfficient
hi. The dying time of the temperature difference is
proportional to the value of 4" as can be seen {rom
equations {11} and (12).

4.2. Oscillation of the ambient temperature
Now let us consider the case when the ambient
temperature is given by the oscillatory function :

T.(0) = T, +AT, sin (w1) (13)

where T,. AT, arc the harmonic mean and the ampli-
tude of the ambient temperature, correspondingly.
Substituting this function in the general sclution
(6) and intcgrating it one can obtain the following
time dependence for the temperature of the clements:

Y (l_),»ATA)
Tiy={\Ty o ~T,+—=5 -
(1) ( e T"T1+(a;, exp (—1)
C - T,
‘2 Tﬂ+l ‘;')3-(sin (@;1) —@; cos (@;7))  (14)
& 1

where @; = wt; = 2n1,/1, are the dimensionless fre-
quencies which include the ratios of the thermal time
constants to the period of the ambient temperature
oscillations 7,,.

This solution includes two components: the expo-
nentially decreasing component dependent on the
initial value and the periodic component correspond-
ing to the response of the element on the ambient
temperature oscillations. The first one vanishes for
the times ¢ > (2+3)7,. Let us consider the periodic
component :

AT, . _ . .
—=5 (sin {@,;1) — @, cos (1))

q; | =
(1) = ¥+ T
T, h Tt 1+ B;

(135

This expression shows that the amplitude and the
phase of the temperature oscillation of the element
depend on the dimensionless frequency ;. In the limit
@; « | the amplitude and the phase of the temperature
oscillation of the element do not differ noticeably from
those of the ambient temperature and can be approxi-
mated by (13). In the limit &; > 1 the oscillatory
component is negligible and the temperature of the
clement can be approximated by the following steady
state value:

T~ T+
h

So two kinds of the quasi-stationarity are shown to
cxist. Within the limit @, « 1 the first kind of the
quasi-stationary regime is established for which the
temperature of the element follows simultaneously the
ambient temperature oscillation without noticeable
delay. In the limit @, » 1 the other kind of the quasi-
stationarity takes place for which the temperature of
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Fi1G. 2. Dimensionless amplitude of the temperature differ-
ence between the elements depending on the corresponding
dimensionless frequencies.

the element does not respond to the ambient tem-
peraturc oscillation and kecps on 1o be constant.

The temperature difference between two clements
with different values of the dimensional frequency is
given by:

AT, (@ —?) sin (1)
g s ) — @7 ) $in {w
~)(|+(DIZ)\ / 1
(D) + @) = (@, (1 + @) cos (wh)}.

(16)

This expression shows that the temperature differ-
ences between the elements are the periodic functions
with their amplitude and phase dependent on the
dimensionless frequencies values @&; and @;. The
amplitude of the function (16) can be taken as the
characteristic evaluation of the temperature difference
between two elements. This value is given by :

AT, ,
ATE = 5 b HB — )

MR BRI B OR Ly =0
H(@B (1 + @) =@, (1+@; )N (47)

The amplitude of the temperature difference is pro-
portional to the ambient temperature amplitude AT,
and is dependent on the oscillation period and on
the thermal time constants of the considered pair of
elements. The dimensionless temperature difference
amplitude ATE/AT, is shown in Fig. 2 as a function
of the values @, and ;. The temperature difference
vanishes for the case when @, = @,. It is cvident that
in the system of the many elements the most significant
value of AT}/AT, corresponds to the pair of the
clements with the maximal and minimal thermal time
constants.

5. SURFACE HEAT FLUX INFLUENCE

5.1. Stepwise change of the heat flux
In this case it is assumed that the surface heat flux
density changes from g4,, o g, during the time A7,
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which is much smaller than the thermal time constants
of the elements:

At,«<t, i=1,...,N.

Taking into account the conditions mentioned, and
assuming that the initial temperature is given by the
heat transfer balance approximation:

T+

Tiu: 0= hy‘

(18)
and completing the integration of the general solution
(6) one can obtain the following time dependence for
the temperature of the elements:
qs2 qsi % 2

T1) = T+ 52 4 =2

h h (19

exp {(—4/t).

This expression is similar to (8). The temperature
difference between the two arbitrary elements is given
by:

AT, = 21782 exp (—tj1) —exp (= 111)). (20)

The maximal value of the temperature difference

max {AT,} = D192 ‘}!2( Vil—n) r;‘”;'(!——q”}) an
is attained at the moment :
1 oy b
Fan = {1 — )hlf_ (22)
i
For the times:
191 — 52l
rwmm}m? (23)

this difference can be neglected.

The expressions {19)—{23) are similar to those in
the case 4.1. Some distinctions should be pointed out.
Firstly, the maximum temperature difference for this
case is in inverse proportion to the convective heat
transfer coefficient. Secondly, the dying time of the
temperature difference is more strongly dependent on
the value of 4 in comparison with that of 4.1.

5.2. Oscillation of the heat flux
Let us consider the case, when the surface heat flux
density is given by the oscillatory function:

4,(1) = §;+Aq, sin (wr) (24)

where §,, Ag, are the harmonic mean and the ampli-
tude of the surface heat flux density, correspondingly.

Substituting this function in the general solution
(6) and integrating it one can obtain the following
time dependence for the temperature of the elements:

g, Ag. &,
T{r) = (nf o i Ta+}t(—lﬁt'@_7)>ex}’(—f)

oy

Ag,
h (1 +a2) (25)

(sin (d,1) — d; cos (B,1)).
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Considering only the periodic component of this solu-
tion:

A
—+T+—j

Ti®) = h(1+ad)

(sin (@;7) — @; cos {d,1))

(26)
one can find the periodic temperature difference

between the two arbitrary elements as:

Ag, (A7 32y
i ];_ca_:)w(_]:z_)ﬁ {w; —®}) sin {wr)

H(@ 1+ B — a1+ cos (w)}  (27)

and the amplitude as the characteristic evaluation of
the temperature difference between the elements:

Ag,
W+ (1 + &}

AT? = =5 1@ )

@),
The evaluations, obtained in this section, are similar
to those of the case 4.2. The dependences for the

dimensionless complexes #AT,,/Ag, and hIAT%/Aq, arc
the same as for AT /AT, and AT}AT,.

+(@,(1 +63}) ~d,(1+ (28)

6. CONVECTIVE HEAT TRANSFER INFLUENCE

6.1. Stepwise change of the convective heat transfer

Let us consider the case when the convective heat
transfer coeflicient changes from /, to #, during the
time which is much smaller than the thermal time
constants of the elements :

A, «t, i=1,...,N

Taking into account the above mentioned
conditions, assuming that the initial temperature is
given by the heat fluxes balance approximation:

Tico=Tut

i, (29)

and integrating the general solution (6) one can obtain
the following time dependence for the temperature of
the elements :

——exp (—t/1) (30)
where ¢, = d,;p,¢;/h, are the thermal time constants
corresponding to the latest value of the convective
heat transfer coefficient.

This expression allows one to obtain the tem-
perature difference between the two arbitrary
elements:

h,y
ar, = V2=
hh

(exp (—t/t)—exp (—1t/1)) (3D

and its maximal value:
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I, —hy)g,

{
max (AT, = .
lrins

Pebogoe g oy
i (g0 Sl )

(32)
which is attained al the moment:

33

zmux

. 4
= (1 =y ‘)In{’.
All these cxpressions are fully similar to the evalu-
ations of Sections 4.1 and 5.1.

6.2. Oscillatory convective heat transfer
Let us consider the case when the convective heat
transfer coefficient is given by the oscillatory function:

Rt = h+ Ak sin (on) (34)

where &, Ak arc the harmonic mean and the amplitude
of the convective heat transfer coefficient.

Substitution of this function in the general solution
(6) gives the following cxpression for the temperature
of the elements:

Ah* _
7i(1) = (Tj. o~ T.) exp (—r~ o (I —cos (w,ﬂ))

+ T, + ‘H" exp (1" ~1)
i

Ah* _ o
X exp( &, (cos (1) —cos (w,r’))) dr” (3%)
where Ah* = Ah/h is the dimensionless amplitude of
the oscillatory heat transfer coeflicient.

The solution (35) contains the exponentially
decreasing component and the periodic component.
In Fig. 3(a) the time dcpendences of the tempera-
ture of the elements with the following values of the
dimensionless frequency @, = 107" and @, = 10 are
shown. The initial temperature of the elements is
assumed to be T, = 7,. These graphs describe the
time dependence of the dimensionless temperature
(Ti(1)— T.)h/q,. The calculations were made by means
of the numerical integration procedure [6].

The graphs in Fig. 3(a) show the fast transition to
the periodic temperature regime in case of the small
valuc of @; and the slow transition in case of the high
value of ;. In Fig. 3(b) the stabilized periodic regimes
are shown for the different dimensionless (requencics
@, of the oscillations of the convective heat transfer
coefficient. In the limit &, — 0 the temperature of the
element follows the time-dependent heat transfer
without the noticeable delay and can be described by
the surface heat transfer balance approximation given
by the expression :

. qs
T = T, + +— e

A= Tt 5 A sin (@) (36)
In the mit @ — = the temperature of the element

does not respond to the oscillation of the convective
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FiG. 3. (a) Stabilization of the periodic temperatures of

the elements under oscillatory convective heat transfer.

(b) Periodic temperatures of the elements under oscillatory

convective heat transfer for the different values of the
dimensionless frequency.

heat transfer coeflicient and can be approximated by
the following evaluation :

T = T+ 7.
h

(37)
In Fig. 4 the dependence of the dimensionless
amplitude of the temperature difference AT}A/q,
between the two arbitrary elements is presented for
the different values of @; and @,. The values of AT %h/q,
were obtained by means of the numerical simulation
program which integrates the expression (33) for the
two values @, &, and finds the maximum of the tem-
perature difference AT, in the stabilized periodic
regime between the considered pair of the elements.
These graphs are in qualitative similarity with those
shown in Fig. 2 for the casc of the oscillation of
the ambient temperature. Comparing the cases it
should be noted only that the values of AT%A/q, arc
dependent in addition on the dimensionless amplitude
of the heat transfer coefficient AR*.
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F1G. 4. Dimensionless amplitude of the temperature differ~
ence between the clements depending on the corresponding
dimensionless frequencies.

7. TEMPERATURE DIFFERENCES
SUPPRESSION

In the above sections of the paper we analysed the
dynamical mechanisms of the temperature differences
between the elements of the truss constructions associ-
ated with stepwise changing and oscillatory heat
transfer conditions. The understanding of the possible
ways of the suppression of these temperature differ-
ences is of practical interest, especially, for the thermal
control of the truss constructions of precise radio
telescopes [1, 3].

The formulas (17), (28), (35), derived for the cases
of the oscillatory parameters demonstrate that the one
possible way is associated with the decrease of the
oscillation amplitudes of the heat transfer parameters:
AT,. Ag,, Ak This mean allows one to diminish the
amplitude of the temperature oscillations of the
elements and, thereby, the amplitudes of the tem-
perature differences between them. For the oscil-
lations of 7, and ¢, the amplitude of the temperature
difference betwceen the elements is proportional to the
corresponding amplitudes AT, and Ag,. But this mean
is applicable only in the case if the control of the
amplitudes of the operating heat transfer parameters
is feasible.

Another possible way of controlling the dynamical
temperature differences consists of intensifying the
convective heat transfer on the surface of the truss by
means of the forced ventilation of the ambient air
through it. In Fig. 5 the amplitude of the dimen-
sionless temperature difference between two elements
is presented as a function of the convective heat trans-
fer coefficient for the case of ambient temperature
oscillations. The calculations are made for the values
of ped; =10 T m~2 K~ ' and ped; = 5x 10 I m~?
K~ ' for the different values of the frequency w of the
ambient air temperature. The possible intervals for the
convective heat transfer coefficients were evaluated by
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F1G. 5. Dimensionless amplitude of the temperature differ-

ence between the elements vs convective heat transfer
coefficient for the ambient air temperature oscillation.

means of the criterion formulas for the tubes in forced
and buoyancy driven air flows [7]. Curve 1 is cal-
culated for the value @ = 271/3600 x 24 s~ ' which cor-
responds to the daytime cycle of the ambient air tem-
perature oscillation. For this case the value of
AT}/AT, decreases proportionally to 47 *. The tem-
perature difference decreasing is explained by the fact
that the increase of # leads to the diminishing of the
thermal time constants of the elements. The amplitude
and the phase of the elements approach the air’s par-
ameters in this case.

The parametric study of the expression {17) shows
an interesting effect. This effect consists in the tem-
perature differences which increase along with the
increase in the convective heat transfer coefficient.
Curve 2 in Fig. 5 shows the temperature difference
amplitude between two elements for the same values
of pcd but for the other value of the frequency
w = 27/360 x 24 s~ '. For these operating conditions
the temperature difference amplitude dependence on
h has a maximum. This maximum is explained by the
fact that for the low values of 4 the following relations
@; > 1, @, » | are fulfilled for both elements. In these
operating conditions the temperatures of the elements
do not respond to the ambient air temperature oscil-
lations. The increase in the coeflicient 4 diminishes the
values of @, and &, and the temperature oscillations of
the elements approach the air temperature oscillation.
But the point is that this approach occurs differently
for the elements with the different values of dpc which
determine the thermal inertia of the elements. As a
result the temperature difference grows up to its maxi-
mal value and only then goes down along with the
increase of 4. The further decrease is explained by the
fact that for this interval of A the temperature regimes
of the elements approach the air temperature oscil-
lation and, thereby, approach each other, i.¢. for these
heat transfer operating conditions the relations
@, < 1, @, « | are valid.

Let us discuss the influence of the heat transfer
coefficient on the temperature differences, associated
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F1G. 6. Amplitude of the temperature difference between the

elements vs convective heat transfer coefficient for the surface

heat flux oscillation (a) and convective heat transfer oscil-
lation (b).

with the oscillations of the surface heat flux density
and convective heat transfer coefficient. For these
cases the dependence of AT} on 4 (for ¢, oscillation)
and /& (for h oscillation) are significantly stronger,
because the values of # or /7 are included not only in
the complexes @; and @, as it takes place in case of
the ambient temperature oscillations. In accordance
with the formulas (28) and (35) the inverse pro-
portions between the values AT and 4 take place as
well. Figure 6(a) presents the dependence of AT} on
h for the values pcd,, pcd; given above and w in the
case of the oscillation of the heat flux density on
the surface of the elements. Figure 6(b) presents the
similar dependence in the case of the oscillation of the
convective heat transfer. Both cases show the mon-
otonous decrease of the temperature difference ampli-
tude between the eclements along with the increasc
of the convective heat transfer coefficient within the
considered interval of /.

8. CONCLUSIONS AND SUMMARY

Analysis of the dynamical mechanism of tem-
perature difference arising between the elements of
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truss constructions under time-dependent umform
heat transfer conditions 1s performed. This analysis
considers the influence of the following parameters:
the ambient temperature: the surface heat flux den-
sity : and the convective heat transfer.

In the case of stepwise changes of the mentioned
parameters the corresponding temperature differences
between the clements incrcase until they reach the
maximal value, then decrcase monotonously and van-
ish exponentially. The dying time of the temperature
differcnces is in inverse proportion to the convectlive
heat transfer coefficient that allows suppression of
them by means of the convective heat transfer inten-
sification on the (russ surfacc.

In the case of the oscillatory heat transfer con-
ditions the elements of the truss constructions have
the periodic temperatures. the amplitude and the
phase of which depend on the thermal time constants
of the elements. The different thermal time constants
of the elements lead to the oscillatory temperature
differences between them under uniform time-depen-
dent operating conditions. The temperature differ-
cneces arc shown to be small for the two opcrating
conditions limits. Firstly. in the case, when the thermal
time constants of the elements are much larger than
the period of the oscillation of the heat transfer con-
ditions. Secondly, in the case, when the thermal time
constants of the elements are much smaller than the
period of heat transfer conditions oscillations. For the
first limit of the operating conditions the temperaturce
regimes of the elements respond weakly on the heat
transfer paramcters oscillations and the correspond-
ing temperaturc differences arc very small and can be
neglected. For the sccond limit of the operating con-
ditions the temperaturc regimes of the elements
follow the oscillations of the heat transfer parameters
simultaneously and the corresponding temperature
differences between them are very small and can also
be neglected.

Under the oscillatory ambient temperature the con-
vective heat transfer coefficient increase leads to the
decrease of the temperature differences between the
elements, only for operating conditions for which the
dimensionless frequencies of the element temperatures
oscillations arc smaller than unity. In the case
when these relations are not fulfilled the increase of
the heat transfer coefficient leads to the increase of the
temperature differences between the elements due to
the fact that the temperature regimes of the elements
approach the oscillatory ambient temperature diff-
crently. Only after attaining the maximum level do the
temperature differences between the elements begin to
decrease along with the further increasce of the heat
transfer coeflicient. And in the case of these operating
conditions the more cffective way of suppression, of
the temperature differences between the elements of
the truss constructions, consists in the increase of the
thermal resistance between the elements surfaces and
the ambient airflow, for example, by means of the
thermal insulation.
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For the case of the oscillations of the heat flux and
convective heat transfer on the surface of the truss
elements increase in the heat transfer coefficient leads
to the monotonous decreasing of the corresponding
temperature differences within the considered interval
of operating parameters.

It should be pointed out that the obtained analytical
evaluations allow one to perform calculations of the
temperature differences between the elements of truss
constructions under uniform time-dependent heat
transfer conditions and to analyse the influence of the
different operating and structural parameters. These
evaluations allow also to determine the parameters
of the convective heat transfer regime necessary
to provide the radio telescopes with the reliable
means of the thermal control of supporting truss
constructions.
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LES MECANISMES DYNAMIQUES DE DIFFERENCES DE TEMPERATURE,
SURGISSANTS EN CONDITIONS HOMOGENES DE L'ECHANGE THERMIQUE

Résumé—L article est dévouée a Iétude analytique de différences de température entre des éléments
constructifs des fermes en conditions homogénes de '"échange thermique. Les différences de température
surgissant comme le resultat des différences entre des constantes thermiques du temps des éléments. Les
éléments de ferme sont considérés comme les corps thermiquement minces. Les longueurs conductives sont
supposées beaucoup moins que les dimensions longitudinales des élément, ce que permet de négliger le
transfer conductif de chaleur. Les évaluations des différences thermiques sont faites pour les suivants
paramétres, lesquells se changent brusquement et d’une maniére oscillatoire: la température de courant
d’aire, le flux de chaleur sur la surface de ferme et l'intensité de I'échange thermique sur la surface
des €léments. Les différences de température sont négligeables pour deux cas limits de conditions du
fonctionnement. Premiérement, pour les régimes, quand toutes les constantes thermiques de temps sont
beaucoup plus grandes que la période du changement de paramétres opérationnels. Secondement, pour les
régimes, quand toutes les constantes thermiques du temps sont beaucoup moins que la période du change-
ment de paramétres opérationnels.

DIE DYNAMISCHEN MECHANISMUSSE DER ENTSTEHUNG DER
TEMPERATURDIFFERENZ BEI GLEICHARTIGE WARMEAUSTAUSCHBEDIGUNGEN

Zusammenfassung—In diesem Artikel wird die Analyse der dynamischen Mechanismusse der Entstehung
der Temperaturdifferenz zwischen Elemente der trigerenen Aufbau, wie in gleichartige Wirme-
austauschbedigungen sich befinden, durchgefiihrt. Die unstationdren Temperaturdifferenz zwischen Ele-
mente der Trdgeren enstehen im Ergebris der Untershied siener Warmekonstante der Zeit. In der Arbeit
wird die Elemente der Trigeren wic die thermischfein Koérper angesehen. Die konductive Linge der
Elemente wird fiir vielweniger der Geometrischlinge gegolten, dafl die konductiven Wiirmeiibergabe
verschméhen wird zugelassen. In der Artikel wurden die Schitzungen der entstehenen Temperaturdifferenz
bei sprunghaften und periodischen Anderungen folgende Wérmeaustauschbedigungen durchgefiihrt : der
Luftstrometemperatur, der Wirmeentwicklunginiensitit in Elementeoberfliche, der Konvectionen-
wirmeaustauschintensitit. Man zeigt, daB die Temperaturdifferenz in zwei Grenzfille sind klein : erstens,
bei den Regime, wenn die Zeitkonstante alle Elemente viel groBer als der Periode der Anderung der
Wirmeaustauschparameter sind; zweitens, bei den Regime, wenn die Zeitkonstante alle Elemente viel
kleiner als der Periode der Anderung der Wirmeaustauschparameter sind.

ANHAMUUYECKHE MEXAHW3MbI BO3SHUKHOBEHUA TEMIIEPATYAHBIX NMEPEINALOB
NMPU OJHOPOAHBIX YCIOBUSAX TEIIJIOOBMEHA

AnBoTamms—AHATHTHYECKA HCCIAEAYIOTCS AMHAMHYECKHE MEXaHU3Mbl BO3HHKHOBEHHS pa3HOCTeH TeM-
TepaTyp MEXAY 371eMeHTaMH (epMeHHBIX KOHCTPYKIHH IpH OZHOPOIHBIX yCnoBHAX Temnoofmena. B
Clydae CTallHOHAPHBIX ORHOPOJHbIX YCIOBHAH PA3HOCTH TEMIICPATYP OTCYTCBYIOT, B TO BpeMs Kak AHMHA-
MHYECKHE HECTALMOHADHBIE MapaMeTphl TermooOMeHa NPHBOAST K BOSHHKHOBEHHIO pa3HOCTeH Temime-
paTyp RaXe HpH OOHOPOAHBIX YCJOBHAX. YKa3aHHbIC HECTALMOUAPHBIE PA3HOCTH TEMICPATYP CBA3AHEI C
pa3IMYMAMM TEIUIOBBIX NOCTOSHHBIX BPEMEHH JJIEMEHTOB. AHATMTHYECKH OUEHMBAIOTCH PA3HOCTH TEM-
nepaTyp AJS CKa¥KOOOpa3HO MAMEHSIOLUIMXCH H Ko/eGaTeNbHbIX MapaMeTpoR TEIIooOMeHa: TemMIepa-
TYpsl BO3LYIUHOTO TIOTOKA, MHTEHCHBHOITH TEIUIOBBIIEJCHHS HAa TNOBEPXHOCTH 3NEMEHTOB K
k03 PunHeHTOB KOHBEKTHBHOrO TeroOMeHa. [TokazaHo, 4TO WIS NPEeNENbHBIX CIY4d€B YKa3aMHBIX
paGouRX YCHOBMH pa3HOCTH TemuepaTyp Heseaukyu. TIpeieNbHBIMHM ABIHIOTCH DPEXMMBI, KOTAZ, BO-
NEPBLIX, BCE NOCTOSHHEIC BPEMEHH JJIEMCHTOB CYHIECTBEHHO NPEBOCXOAAT NEPHOR KosebaTenbHbIX
AApaMeTPoB TeIU100GMeHa H, BO-BTODBIX, KOTAR TOCTOSHHBIE BPEMEHH BUEX JJIEMEHTOB 3HAYMHTENBHO
MeHbIlie K0J1e6aTeNLHOrO NEPHOAa.



